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Hence, and from (5.4), we finally obtain 

A graph of the continuous part of the function t(t)- a$ is shown in Fig.3. The pres- 
ence of a*singufar component and a singularity at z== b in the correlation function of the 
xandom field %,,(i) on tbe line of defects is due to the replacament of the real cracks by 
point defects. Par a random field of,inbc.mogeneitfes of finite size the correlation function 
should be smooth, bounded, and have minimal correlation radius of the order of the mean size 
of the defect. As a random field of defects approaches a mgular lattice, the correlation 
radius of the stress field grows , as is also ssen from Pig.3 (the physically meaningless 
domain r< 6 is not shown in Fig.3). 
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UDC 539.3:534*1 

L.S. SHUBSHCHIK 

The influence of small geometric imperfections of the shape of the middle 
surface on the non-axisymwetric buckling and initial post-critical Qehaviour 
of shallow elastic spherical shells is investigated for a uniform external 
pressure. 

Cases are coasidered when the least bifurcation load of non-axisymmetric buckling pa of 
the corresponding ideal shelf /l/ is a double eigenvalue of the linearized problem, i.e., 
buckling in two eigen modes occurs. Surfaces of values of the upper critical load as a 
function of imperfection functionals are constructed by using matrix pivotal condensation /l 
-71 and alignment f8-lo/ metbods for shells with a closed framed edge for A= 6.8 and 9, 
with a free clamped edge for A== 8.045, and with a fixed binge-supported edge for b = 5,655 

and n-co, where the parameter is' A = 2f3ft -+)t"*(s/k)"~, and His the height of the shell 
rise, h is its thickness, and v is Poisson's ratio. 

Pxikl,Matem.Mekhan.,Vol.47,No.4,pp.662-672,1983 
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Formulas for the theory of the initial post-critical behaViOUr Of spherical Shells with 
elastic clamping of the edge in a fixed wall have been obtained by the perturbation method /7/, 
and in an asymptotic analysis as A-+= by the perturbation method in combination with the 
boundary-layer method. Methodologically this case is interesting because of the presence of 
non-linearityinthe baunaKy conditions. 

The influence of initial imperfections ontbe non-axisymmatric buckling of spherical shells 
under linear boundary conditions was investigated in /2,3/, when p. is an isolated eigenvalue, 
and in /b--6/ for h&17, when p,fs a double eigenvaLue. An asymptotic analysis as A-., 
in the case of a closed framed edge is given in /3,11/. 

1. Formulation of the problem. The system of non-linear equilibrium differential 
equations of shallow elastic spherical shells with small initial imperfections in the middle 
surface shape /12/ under uniform external pressure can be represented in the form 

p..g 0, 

We will consider these eguations together with each of the boundary conditions on the 
contour r5i 1 

1) w=~,wr=F=P=o; 2) w=l-‘~w=I’$‘=O, 

Eoar$ + ,.&I 
i 

W’ - &W’ -,- d.m W” 2 j= 0; rlw=&(wW+ VW' f 

I(&,-‘w’) + WI, r2F = P - vF’ - vF” 
r8F = FM t- (2 + v) F”’ -+ (V - 1) F’ - 31;““, 0 c Y c 0.5, 6 = 0 

a.21 

Here t+ = 0, pg = 1 or pr = 1,~~ = O,k is the coefficient of elastic clamping of theadge 
in a fixed wall, Ec(r,6) is the initial deflection, E is a scalar parameter, and I $1 Q f. 
The dimensionless quantities in (1.1) and (1-2) are related to the dimensional quantities by 
the formulas given in /6,13/. 

Problems (1.1) and (1.2) for any p and E = 

(r, $9, P"(r* PN* 
0 have axisymmetric solutions z* (r,p)= (w* 

which are determined from the appropriate boundary conditions 

eitsAou = UP + rv -f 2pra 

S&&R e+.ULIIL 

A,u = r (r-1 (N)‘)‘, 1 m-1, W-1 IF-O ( m 

W* (1, p) = 0, 24 (r, p) = w*‘, v (r, p) = F*’ 

1) pa (u’ + VU + keo-C) + pou = v = 0, r =i 1 

2) p, (u’ + vu + k%-lu) + ptu = v’ - ~0 = 0, r =ii 1 

(1.3) 

It is shown in /l,l#/ that critical loads p = po exist for which non-axisymmatric modes 
can exist together with x*. These loads are defined as eigenvalues of the boundary value 
problems 

l~'&EEiQi&&'W ,-ar,-plG$+-~I,f- (1.41 

+j,L~w5j_$W~*~o 

z:?z - ,e -e*~&*f*-&w$& -~w+q&+i+Q, 

s, - b%? fn) 

Lno=ol++0) -$(I, f,=O(rnl, uh==O(r~J 

UO = u (r, PO), VO = v (r, p*); n = 1, 2, . . . 

1) lo, = r,w;, = fn = fn’ = 0, r = 1 

21 w* = r,w, = Ii, h jn) = R 0% %J = 0, r = 1 
R, fa, ff = j” - vj’ + way; .R in, s&f = ef? lj** - (2 I- v) n’fn’ $ 

wj* + (v - 1) fn’l + &I (1 + %) ut,’ 
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the 
the 

Problems (1.4) are obtained by linearizing (1.1) and (1.2) with respect to x*(r), where 
eigenvector-functions are found in the form *(f)CoBr& where n is an integer. Note that 
values ofp, are calculated in /1,10,13,14/ for different I% and n. 

2. Application of the perturbation method. 
will be investigated by the perturbation method /7/. 

The influence of small imperfections 

A, for the small petrturbations h-, 2 = &I,$) 
Setting w = w* -I- ce,F = P* f @ p =po + 

(1.2) which we write in vector form 
we obtain boundary value problems from (1.1) and 

We will seek the solution of (2.1) in the form of the series 

5 = qu, i- q=up i- . . ., Ur = (QI, Y*), 111 I < 1 (2.2) 

h = ?Q", + q*& I- . .., 5 - q’E* + ?)a& + . . . 

Here 1 is a small parameter. Substituting (2.2) into (2.1) and equating coefficients of 
$to zero, we obtain a boundary value problem in the eigenvalues 

Iw,V, = 0, u, = (Ql, PT,) (2.3) 

1) Q, = r,q = Y, = Y,' - 0, r = 1 

2) or = r1s2, = raYI = roul = 0. r = i 

Seeking the solution of problems (2.3) in the form U, = x,,(~)cos n8, we arrive at system 
(1.4). 

In /6/ it follows from (4.9)-(4.18) that the boundary value problems (2.3) are self-ad- 
joint, Let pobe an eigenvalue of problems (2.3) and let n eigenvector-functions 'pi =(o,,$,) 
satisfying the orthonormality conditions 

correspond to it. 
Here &, is the Kronecker delta and <., *> is the scalar product 

of two-dimensional vector functions with square-summable components. 
Equating the coefficient of q' to zero, we obtain 

in the Hilbert space Ea 

The real numbers CQ are determined from the conditions for problems (2.4) to be solvable. 
By using integration by parts and taking account of Lemma 4.1 in /6/, we write these condi- 
tions in the form of a system of algebraic equations 



543 

(2.5) 

of the double sum in (2.5) equals zero for all j, and T,kT,- T,,,,Takf 0 for SOme pair 
of subscripts k,m, then h, = & = 0, Then equating the coefficient of '1' to zero, we obtain 
an equation for u8 whose solvability COAditiOAS yield a system of algebraic equations for find- 

ing the real numbers Ui 

h,T,j-_aT,j=O (j=iv2,...,n) 

~o!kSt = ww %I t I% %Jt loml4~ 

YSSz=l&+4n~ &fiP;m), m#f 

Z&ii- = B%v %I% % i%w %J& &mS = &8n* 6rElJ 

setting ai = &q-l, &k zz $qmk* & zz hq-' (k = 2, 31, we obtain from (2.5) and (2.61, respect- 

ively, a system of bifurcation equations of the form (5) in 141, obtained for the linear 

boundary conditions. 
Let two eigenvector-functions 'pl (r, 6) = z,(r)Cos s6 ana ‘ps (I, 6) = 2, (7) cos ~788 correspond 

to the eigenvalue pe of the probkm (2.1). where m>s>i,2s+m,3s#m, and s aAd m arci? 

intagers. Then system (2.6) can be written in the form 

The coefficients of the system (2.7) are calculated from the formUlas /5/ 

we introduce the notation 

A1 = br - b,, AZ = a, - ap, A, = a,b, - %b, 

Theorem 2.1. Let the shell have the initial deflection &(r)ces A& and let p. h a 
double eigenvalue of problem (1.4). Then problems (1.1) and (1.2) have three limit poiats 

~~(~1 (i = 1,2, 3) iA the left semicircle of pcin the plane r& = 0 if the inequalities 

bg) 0, &A;'> 0 are satisfied simultaneously, 
b,>O, 

ies axe satisfied, 
two limit points if any two of these inegualit- 

and one limit point 
pltrJ are determined from the equations 

if one of these inequalities is satisfied. Here the 

(PO-PpP3"" ="/*i@J(3bof'tl, q>o (2.9) 

K"@o -#')J"'=I&Ef&- bs)-xI, bl>O 
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(PO - pi3’)” =s/-ala&'d,E I(3A&')'~* 

46;'>0, 151<1 

We have for the corresponding solutions of system (2.7) with dl = 0, ds # 0 and 
PO -PI”‘>0 

L, = 

(2.10) 

The upper flower sign in (2.10) is taken in cases when the appropriate expression under 
the a&lulus symbol in (2.9) is positive (negative). This theorem supplements the similar 
Theorems 7.2 and 7.3 in /6/. 

The boundary value problems to determine the functions in (2.7) are written only for 
boundary conditions 2) in (1.2) since they are known /5,6/ in the case of linear boundary 
conditions. The vector-functions E = (E,, Ed and F = (F,, F$) are found from the problems 

1f”E = ‘/a (II - I,), 1fZ’E = +- (ZY - 14) (2.1 

j=m-s, Ei=O(fl) 

E,=I’,El=Ra(j, Ea)=R(j, E) f+~‘ya’=O,. r=i 

Ii’)F=+(zl + Zz), lis’P = -+ (I, + I*) 

t = m + S, F* = 0 (#) 

F l=r~F,~R~(t,F*)=Rfi!t,Ff+~YI~Y*~=O, r--l (t--*,2) 

23 (r) = (n, 6,), %I w = h &&) 

For m - s = 1 the first system in (2.11) is converted to the form 

1) 

eo3 [zo" -I- 3 (loi')' - (uO + r) y,F - v,x,T" = v1r-3 

Q2 lye" + 3 (yoP)'l -l- (u. + r) 2$-l = 
-Vkrv3, ) xoP, yordl Iw < 00 

p1 hJ’ -I- (2 -I- Y I- keo-')s,l + ~~20 = Ilo' -I- (2 - v) y, = 
0, r = 1, z. = (Eg%)‘, y, = (E%r-*)’ 

(2.12) 

The vector functions s1 = (--&,a,) and B = (&,8,) are found from the boundary value 
problems 

eo9AoBx = vo& - (u@ + r) a, + gl (4, eozAoa, = tio& + (2.131 
r!% + g,(r), Ip, (81' + ~0% + keo%) + F& = al' - =Jr=~ = 0 

a, (0) = Br (0) = 0 

(2.14) 

See /5/ for the remaining notation. 

3. Application of the method of alignment. The coefficients and right sides 

of (1.31, (1.4), f2.11)-(2.14) have singularities as r+O, and consequently difficulties 

associated with the approximation of the equations in the neigbbourhood of the point r=O 

occur on integrating the appropriate boundary conditions. By using the change of variables, 

new modes of writing these boundary value problems can be obtained which are convenient for 
the effective application of the method ofaliqnment/8-10,15/ (*f. 

Taking account of the results of Sect.9 in /lo/, we assume in (1.4) 

*) The detailed content of Sect.3, as well as an investigation of the buckling of imperfect 
arbitrary shallow shells by the perturbation method. See also, Srubshchik L.S., Application 

of the method of alignment to analyze non-axisymmetric buckling and post-critical behaviour 
of elastic spherical shells. Rostov-on-Don, 1982, 48 p. Deposited in VINITI, 11, 11, No. 

5568-82. 
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(3.1) 

Then, to determine p0 and its eigenvector-functions 2," = (o,,“,&,o) we find 

~o’K,z, - (1 + uoP) q,, - v,r-5x,, - (LL~~-~)‘T,,$,~ - 
(v,F’) T,,o,’ = 0 

EOaKnqn -I- (1 + u,r-l) z, + (u,r-')' T,,w,,~ - 0, z, = X,,o,,“ 

qn = K&,,“, K,z = Z* + (2n - 1) (zrwl)’ 
T,z 1 z’ - (19 - n -I- 1) zr-l (n > 2) 

I (%sO, aLo, .k,, rm) f’ Lfl < 00 
1) 6&o = ‘p. = t&O = *so -= 0, r = 1 

2) so = cp, = qn - (1 + v) T,,s” = 0 

Eo” {Pn’ + fn - 2) gn + (1 + v) (I - 4 Ilp,” -i- (n - i)&&Y} + 
px (f -b us) so’ = 0, T = i 

‘PO = PlkJ + (v - 1 + ieeo') o,"'l + a,o*o' 

we make the change of variables 

We write problem (1.3) in the form of a system with boundary conditions 

Yo'+-+, f+,&~-2pr), 

W--+, c(&+**)j* GoGr=Gi 

Y,' = (to, 0, ao, O), 0 Q r Q 6, @lo= IO+) 

y, (0) - ys (0) = 0, I% (0) = 2Fg, y4 (0) = 247 

1) Pl [yr -I- (v - 1 + !ce,-1) nl + WI = $I8 = 0, r = 1 
2) Plhh f(V - 1 + Jab-9 Y,I + wl = h - (1 -t- +Y~ = 0, r = 1 

To determine pO and r,,'we have the following system from (3.2) 

e~z~~t(n-~2)~~,+(~+~)(~-~*)(y*+ 
- 1) .!!*)I -b p1 (1 - y1)ye = 0, r = 1 

&yi = (2n - 1) (yi - ryi+d P, 

G,yi = yt+l - (n’ - n + i) y,r-l 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The unknown parameters so, t,, sj are calculated by the method of alignment f8-10,15f by 
using the boundary conditions for r= 1. Analogously, the substitutions 
?.=*-i2 ,,,"; B = P-W, F = r’-W are made to transform problem (2.11)--(2.14). 

2, = r'-ki~~~, 2, * 
The difference 

between the numerical results by the method of alignment presented below and the results from 
the programs in /d-G/for a number N= 100 of mesh nodes does not exceed 0.03% for the 
Calculation of PO and 1% for the calculationofthe coefficients of system (2.7). 

4. A spherical shell for a closed framed edge. Let gobs the classical value 
of the critical pressure for a Complete sphere p. F p~go-“,h = 2 13 (1 -v')]Y4(Hlh)'l~, 
is the critical pressure of non-axisymmetric buckling of an ideal spherical shell. 

where pB 
As in 
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/l--6/, we will set Y = 0.33. 
Using the formulas of Sect.3, we calculate for problems (l.l), 2) in (1.2) with .I = 6.6. 

p1 = 0,~~ = 1 that two eigenvector-functions mlandcpt with the harmonics s = 2, m = 3 COAXES- 

pond to the least eigenvalue p0 = 0.774 . To determine the critical loads ps(Ed,, !d,) we der- 
ive the system of equations 

aV/av, =O, det ej =-O (k, j = 1, 2) 
il tl 

v = 194.4v, + 203.9 v,‘ + 739.3 VI%,2 + 

@ -PO) (415~1' + 666~s') + f (+I + Q,) 

(4.1) 

Hence, following /5,6/, we have from (2.9) for critical pressures for d, =O and da#6: 

Pt(‘) = PO - qt (d&)“* (i = 1, 2, 3, 4); ql = 1.59; q% = l,6; qs = q, = 664 (4.2) 

For the critical pressures we have for d,# O,d, = 0 

PI(‘) = p. - xt (dlE)‘l* (i = 5, 6, 7, 8); x5 = 1.85; x6 = 3.02; ~7 = 8 = 1.25 (4.3) 

The arrangement of the cirtical load surfaces p,($d,,&) is analogous to the case of a 
spherical shell with 11. = 17 (see /5,6/), where the greatest reduction in the critical value 
equals 0.41 for R = 1 t 1 (d,* + dS*)‘ls = 0.01 and a = 1.37, i.e., M, (1.37; 0.41). Therefore, for 
R =0.01 the critical pressure of an imperfect shell is 53% less than po, and 11.1% less 
when taking account of buckling by one mode. The strong reduction in the bifurcation value 
of pa is characterized also by the relationship (PI@) -ppo)(p~(1)-ppo)-*x5.~, where p&‘) and ~~(3) 
are, respectively, the critical loads taking one and two eigen modes into account. 

For A = 9 two eigenvector-functions upland m,with s = 4, m = 5 correspond to the value 

PO = 0.776 .The potential function has the form 

V = 322.5vi + 364.6~~~ + 1447~,2v,~ + (p - po) (765.3~: + lO@v,*)-+ E(d,v, + &v,) (4.4) 

Here, (4.2) and (4.3) hold for ql = 1.72, q, = 1.73; qs = qp = 3,7, x5 = 1.79, xs = 2.05, X, = 
xs = 1.76. The arrangement of the critical load surfaces is analogous to the case A = 17. 
where C1(0.62; 0.02), M,(1.18; 0.19). The critical pressure of the imperfect shell is 24% less 
than p. for R = 0.01 , and 10.7% less than taking account of buckling in one mode. For A= 9 
we note the experiment in /16/. 

5. A sperhical shell with a free clamped edge. In this case calculations of 
the eigenvalues of the problem (1.4) for n = 1 together with the results in /6,9/ for n> 2 
show that for v = 0.3 non-axisynanetric buckling of an ideal spherical shell is possible for 
A) 6.3. The graph of the coefficients b(A) = -aalp,-‘, introduced in /3/ to estimate the shell 
response to imperfections for the least bifurcation value PO, obtained by the application of 
the alignment and matrix factorization methods, is shown in the figure for the appropriate 
boundary value problem (l.l), and 1) in (1.2) for p1 = I,% =O. At the points A = 6.7, 
6.045, 9.52, 11.1, 12.75, 14.5, 16.3, 16, 20, 22 the eigenvalues ppbelong to the double spect- 
rum and equal respectively, 0.345, 0.348,0_343, 0.335, 0.327, 0.318, 0.310, 0.302, 0.295,0.286. 

Eigenfunctions with the numbers of the harmonics i and i fl correspond to the value of p. at 
the i-th place. Moreover, p0 (6.3) = 0.331. A graph agreeing with Fig.8 in /3/ is obtained for 
the coefficient b when checking the numerical programs of this paper in the case of rigid edge 
clamping. 

In the case of buckling in two modes v1 
8 and 9% with the harmonics s = 2, m = 3 , for 

A = 3.045, v 3 0.33 we obtain the following 

-0.2 potential function for the least bifurcation 
va1ue p. = 0.348 

-0.15 v = 57.lv,' + 50.6v%~ + 244.6v,zv,2 + 
@ - po) (1323~1' + 17OOv,*) + E (d,v, f &a) 

-0.1 
6 to t4 t8 A 

Here q1 = qr = 0.737, qs = qr = 1.853; xI = 0.618, % = 0.991, x, =x, = 0.652, M1 (1.13, 0.09), 

C,(O.62, O.O66).Tfiecritica1p~ssureofanimperfectshell whenR = 0,Olis 26.5%lessthanp0 for an 
imperfect shell, and 9.8% less when taking account of buckling in just one mode. 

Note that the graph in the figure does not agree with an analogous graph in Fig.3 in /l7/, 
where the calculations were performed by the alignment method by means of (l5), (141, (29) 
and (30) from /2/, where the change of variables 



(z, 8, (0) = A (r, p, 9), (to,,, f1n. p, X) = P W”‘,. AF?tv r-7 rn 49 5 - A 
is made in going over to the Cauchy problem. Such a substitution will obviously result in 

unsatisfactory results since, according to /17/, when integrating in the interval [O,il the 

solutionsof theabove-mentionedboundaryvalueproblemsarereplacedbyasegmentof theTaylor ser- 
ies for r~[O,Ar],whereArvaries between the limits 0.11-0.27. For instance, it is asserted in 
/17/ on the basis of numerical computations that "for fixed n, b is a negative continuous 
function of b".However, in the normalization of the eigenfunctions used in /2-6/, for n= 2 
the correct computations give b (8.76) i= -8.32 and b (8.77)= 92.4. Hence, at the very least a 
variability in the sign of the coefficient b results. 

The sign change for the coefficient b in the interval 8.76<h(8.77 indicates the pass- 
age of the mode with harmonic II= 2 from unstable into stable. A value A* exists in this 
interval such that pod 0.5557. Lx1 - 2352, b = -LI&l-~po-l -. r 00 as A -. A. r 0 and the amplitude Y, 
of the appropriate non-axismetric mode satisfying the bifurcation equation L*ovf + Lll (P - 
PO) v,+ EL, = 0 tends to zero, i.e., for A= A. the solution "sits" on the axis v,=O. This 
latter remark is due to V.A. Trenogin. 

6. Aspherical shell with a fixed hinge-supported edge. Numerical computations 
of problems (l.l), 2) in (1.2) for p1 = 1,~~ = k = 0, v = 0,33 show that the non-axisynnnetric 
buckling of an ideal spherical shell can hold for Aa3.4. At the point A =4.36,5.655, 6.94, 
9.02, 9.35, 10.6, 11.95 the eigenvalues poare repeated and equal to, respectively, 0.652, 
0.647, 0.655, 0.664, 0.669, 0.674, 0.679. The eigenfunctions with numbers i and i + 1 of 
the harmonics correspond to the value of p,, at the i-th place. In the case of buckling in 
two modes v1 and 9% with the harmonics s=2,m=3, for A = 5.655;~ = 0.33 and p. = 0.647 
we obtain the potential function 

V = 234.7~: + 25(X&' + 988.9v,pV,* + (p -p,,) (622.7v,' + 913.9v,*) + E (dlv, + &v,) 

Here 

q, = 1.55; qg = 1,55; qS = qr = 5.21; x5 = 1.72; xr = 2.28; x7 = xs = 1.33; Ml (1.18; 0.25), C1 (0.51; 0.03). 

The critical pressure of an imperfect shell is 39.1% less than p0 for R = 0,01, and 
12.3% less when taking account of buckling in one mode, 

7. Asymptotic analysis as Q-O. Let a,-O(A .-0000). Then in the case of the bound- 
ary conditions 2) in (1.2), for the axisyrmnetric solution z*(r) as s,dO the following 
asymptotic representations hold /13,14/ 

U-W, v--2pr+%h. P<% 

g = $1 (G-'2, + Y,). h = 81 f&b + pb-W re + 81 (P - zcrr,) ye 

2a'=i-pp, 2b’=l+p, t=(l-rr)e;l 

z =c*t c 8m bt, ye = c”’ cos bt 

sl = 2p (v - 1) (k+ 211)-l 

12 = k + (1, A = E;’ 

Following /1,3,11/ and setting r= 1 -q.a= nae,', from (1.4) as e,-0 we obtain 

I&n20 E 0"" -22ao"+aC+5~+2po'-2poo-8h'o-aog'~--9"=o 

Z~)z,r-~rb""+2slJP-- ~y-q'o-eO'+oo =o, ZO'(O,ql) 

z,,(A)=z',(A)=O, [O=~1(0”-kkO’)+llsO’=~‘+O~=~-- 

5 (2 + v) v + P14t,o = 03 ( )’ = $ ( ) 

(7.1) 

(7.2) 

to determine the asymptotic value of the upper critical pressure of non-axisymmetric buckling 
pa, the amplitudes of its eigenvector functions (~&8'(t)) and @. 

The surfaces of the asymptotic values of the critical loads are determined from the 
system of bifurcation equations (2.7), where the coefficients are determined by the formulas 
/ll/ 

2W) - f0W’-w’)ldt 
1 

, CO = 2 (v - i)a(O)+ &Y+U" ' -4g&dt, p=pa, u= 8 

0 
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For a closed framed 

In this case we have for 

=%A~ c, u * @I- 911 -0 and the coefficientsdiand +from /ll/ are zero. 

A 

d; = (8*I)-W,t s ((2P + h’) y + 0) p & 

II I r-1 

(7.4) 

The operators Ag, 22 are obtained, respectively, from expressions for the operators 

I$', A!' in (7.2) by replacing a by 40 . Note that in this notation, instead of @!,Ag in 

/ll/,one should read @, 13 tespectively. For the functions f- &, fn) and cl,*, also concen- 

trated in the boundary layer, we have 

‘Ifb’f = 3 (o1+ & li!f = +. (6s + 84) (7.5) 

s1 = - 2o(Y"l)+d"y), sr = 4&v* ss = - Zay’y, 8,= 2ay'* 

ffi = Iri (fi” - kfi’) + iirfi’ = fr’ + kW¶ = 
I*“- 40(2+v)fn’+iLlfl’l~“5* f(A)=f’(A)=5 

. 
x1 -~-!-2m=a($Y, ~SS+xr=--aw’ 

%I=---e,. ’ % = - &?‘,. &I‘\) = %y (A) = 0 

[W+- k%l) -I- Pa%* = %‘*I 14 = 0 

Formulas (7.1)-(7.5) are derived from (2.11)-(2.14) by the boundary layer method as 
e, - 0 , and their extension to strictly convex shells under axisynanetric loading is performed 

by using the results obtained in /11,14/. 
The boundary value problems (7.2), (7.4), (7.5) were solved as in /ll/, where numerical 

results are presented for p,== 0, I",== i. For a fixed hinge - supported edge h- i, A+= k-0) 
we have Fo+pa= O,?lO,m&~- au= O&45(1 - 1,2), a,== 0.7284, b,= 1.4568. For the critical pressures we 
have (4.2) and (4.3) with ps, &,+ replaced by pa, 4”. q, q,= XI xp- 1,700. Q- x, = 1,799, rl~ - ~7 = 2.452. 
The values r=i.S are obtained when taking account of buckling in just one mode. The critical 
load surfaces have the same form as in /5/, where Mx (Wi&O.i32)~ Cx (sI4,0,02) A, = Bi. 
Assuming that p”is a hextuple eigenvalue, we arrive at formula (11) in /Ill, where VP = 'II. 
Yp= = qr; Yr" * 8,048; y&= = 9,51i;yh== 12,943;~,~=16,382;yp=ttt. These formulas explain the high sensitiv- 
ity of very thin elastic shells to small initial deviations of their surfaces from ideal geo- 
metric shape. 
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2. 

3. 

4. 
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QUASI-T~NSVERSE SHOCK WAVES IN AN ELASTIC MEDlUM fN THE CASE OF 
SPECIAL TYPES OF INITIAL STRAIN* 

E-1. SVRSHNIEOVA 

Weak shock waves in isotropic elastic medium under an arbitrarily small 
initial strain were considered in /1,2/. The present paper deals with 
shock waves with higher order of symmetry, when there are special types 
of initial strain; all the results are obtained in explicit form. 

1. Fomultation of the problem. The investigations are carried out using the same 
formulation and the same degree of accuracy as in /l-3/. The general form of the elastic 
potential of the isotropic medium is given by the expression 

qP=p0U kj, S)=-'/9hIla -t-pit f BIll2 -l-y& + 621~ + 
fraZfpoTa(S-&) +const. 

Ix=& Z*=eijE+j~ Ist=Ejjej&. 

( 

aw. airr aw 
%j=+ ~+-$-b-$--+ 

) 

Here Uis the internal energy, 
temperature, 8 is the entropy, 

pc is the density in the stress-free state, T is the 

placemant tensor components, & 
etf are the finite strain tensor components, a~_are the dis- 
are Lagrangian coordinates, 

stress-free state is rectangular Cartesian. 
and the coordinate system in the 

The axes of this system are chosen so that the 

*Prikl.Matem.M~khan..Vol.47,No.4,pp.673-678,1983 


